SPOJENIE EXTRAKCIE S VYUŽITÍM TEPLOTY ZÁKALU MICELÁRNYCH ROZTOKOV S METÓDAMI ATÓMOVEJ SPEKTROMETRIE NA SEPARÁCIU, PREKONCENTRÁCIU A ŠPECIÁCIU KOVOV

INGRID HAGAROVÁ

Univerzita Komenského v Bratislave, Prírodovedecká fakulta, Geologický ústav, Mlynská dolina G, 842 15 Bratislava, Slovenská republika hagarova@fns.uniba.sk

Došlo 11.4.08, prijaté 26.6.08.

Kľúčové slová: extrakcia s využitím teploty zákalu micelárnych roztokov, kovy, separácia, prekoncentrácia, špeciácia, atómová absorpčná spektrometria, atómová emisná spektrometria

Obsah

- 1. Úvod
- Extrakcia s využitím teploty zákalu micelárnych roztokov (CPE)
 - 2.1. Princíp CPE
 - 2.2. Postup CPE na separáciu, prekoncentráciu a špeciáciu kovov
 - 2.3. Optimalizácia experimentálnych podmienok pre CPE kovov
 - 2.3.1. Výber chelatačného činidla
 - 2.3.2. Výber a koncentrácia tenzidu
 - 2.3.3. Vplyv pH
 - 2.3.4. Prídavky pomocných činidiel
 - 2.3.5. Teplota a čas inkubácie
 - 2.3.6. Separácia fáz
 - 2.3.7. Výber činidla na riedenie tenzidom obohatenej fázy
 - 2.4. Spojenie CPE s metódami atómovej spektrometrie
 - 2.4.1. Spojenie CPE a FAAS
 - 2.4.2. Spojenie CPE a ETAAS
 - 2.4.3. Spojenie CPE a ICP-AES
- 2.5. Zhrnutie
- 3. Záver

1. Úvod

Spájanie separačných techník s detekčnými metódami predstavuje v súčasnosti moderný trend v smerovaní analytickej chémie. Je to spôsobené jednak z dôvodu častokrát až ultrastopových koncentrácií sledovaných analytov nachádzajúcich sa v environmentálnych a biologických vzorkách (pri ktorých sú kvantifikačné limity dostupných detekčných metód nepostačujúce), ale aj z dôvodu vysokých koncentrácií doprevádzajúcich zložiek, ktoré častokrát znemožňujú priame stanovenie analytov nachádzajúcich sa na stopových až ultrastopových úrovniach. Ďalším dôvodom je narastajúca potreba špeciácie predovšetkým toxic-

kých a esenciálnych prvkov. Práve uvedené dôvody vedú k snahám vyvinúť nové postupy separácie, prekoncentrácie a špeciácie, ktoré by boli bezpečné, rýchle, spoľahlivé, časovo a finančne nenáročné.

V poslednom období je stále vyšší záujem venovaný technikám, ktoré využívajú rôzne micelárne roztoky tvorené z jedného alebo určitej zmesi neutrálnych tenzidov (neiónových alebo amfotérnych) na separáciu, prekoncentráciu, ale už aj špeciáciu rôznych analytov z analyzovaných vzoriek. Za posledných desať rokov je jednou z často využívaných metód práve extrakcia s využitím teploty zákalu micelárnych roztokov ("Cloud Point Extraction" – CPE).

2. Extrakcia s využitím teploty zákalu micelárnych roztokov (CPE)

Medzi prvé práce, ktoré popisujú využitie CPE pri analýze kovov, patria práce publikované pred 30 rokmi^{1,2}. Odvtedy počet prác, ktoré využívajú CPE či už pri extrakcii iónov kovov vo forme chelátov kovov alebo pri nakoncentrovaní organických polutantov, narastá. Kontinuálny nárast je zaznamenaný predovšetkých po roku 1990. Na obr. 1 sú znázornené počty publikácií venované využitiu CPE v rôznych oblastiach analytickej chémie pri analýze organických aj anorganických analytov, ako aj počty publikácií venované využitiu CPE pri analýze rôznych kovov za posledných desať rokov.

Obr. 1. Počty publikácií venované využitiu CPE v rôznych oblastiach analytickej chémie (celkové počty – sivé stĺpce) a počty publikácií venované využitiu CPE pri analýze kovov (biele stĺpce)

2.1. Princíp CPE

Povrchovo aktívne činidlá (tenzidy) sú amfifilické molekuly skladajúce sa z hydrofilných a hydrofóbnych častí, čo bývajú vo väčšine prípadov polárne alebo iónové skupiny spojené s dlhými uhlíkovými reťazcami (ktoré môžu byť lineárne alebo rozvetvené, ale môžu obsahovať aj aromatické kruhy). Vo vodných roztokoch, v ktorých sa nachádzajú veľmi nízke koncentrácie tenzidu, sa molekuly tenzidu vyskytujú predovšetkým vo forme monomérov (avšak môžu byť prítomné aj vo forme dimérov alebo trimérov). Keď ich koncentrácia vzrastie nad určitú hranicu, "kritická micelárna ktorá sa nazýva koncentrácia" ("critical micellar concentration" - CMC), monoméry tenzidu sa spontánne zhromaždia a vytvoria koloidný klaster, nazývaný micela (obr. 2). V závislosti od vlastností použitého tenzidu a analyzovaného roztoku môžu mať micely rôzne veľkosti a tvary (od guľovitého až po elipsoidný)

Po pridaní tenzidu k vodnému roztoku (koncentrácia tenzidu musí byť vyššia ako CMC, aby dochádzalo k vzniku miciel) a následnom zahriatí nad určitú teplotu (ktorá je charakteristická pre každý tenzid - "cloud point temperature" - CPT), sa takýto roztok stáva zakaleným v dôsledku preskupenia micelotvorných zložiek a vzniku ďalšej fázy. Takto sa získajú dve fázy; jedna obohatená tenzidom ("surfactant rich phase" - SRP), ktorá obsahuje hydrofóbne a nepolárne zlúčeniny zachytené v nepolárnych jadrách miciel, a druhá - vodná fáza s koncentráciou tenzidu blízkou CMC. Štúdie venované objasneniu mechanizmu tejto separácie poukazujú na to, že takáto fázová separácia je výsledkom súťaženia medzi entrópiou (ktorá uprednostňuje miešateľnosť miciel vo vode) a entalpiou (ktorá uprednostňuje separáciu)3, takže vytvorenie zákalu a fázová separácia je dej reverzibilný a po nastolení pôvodných podmienok dochádza k opätovnému vzniku homogénneho systému⁴.

Obr. 2. Schématické znázornenie vzniku micely z monomérov pri koncentrácii prekračujúcej kritickú micelárnu koncentráciu (CMC); čierne guľôčky predstavujú polárne skupiny naviazané na nepolárne uhlíkové reťazce

2.2. Postup CPE na separáciu, prekoncentráciu a špeciáciu kovov

Pri separácii, prekoncentrácii a špeciácii kovov s využitím CPE je jedným z prvých krokov vytvorenie vhodného hydrofóbneho komplexu analytu, ktorý môže byť následne zachytený v hydrofóbnom jadre micely. S tým súvisí výber vhodného chelatačného alebo komplexotvorného činidla (okrem prípadov, pri ktorých nie je potrebné použitie týchto činidiel). Po pridaní zvoleného chelatačného činidla sa ku kvapalnej vzorke pridá vhodný tenzid. Po dôkladnom premiešaní sa roztok zahreje nad CPT. Po určitom inkubačnom čase nasleduje separácia fáz (najčastejšie urýchlená centrifugáciou). Hydrofóbne a nepolárne zlúčeniny zachytené v nepolárnych jadrách miciel sa nachádzajú v tenzidom obohatenej fáze (SRP), objem ktorej sa najčastejšie pohybuje v stovkách mikrolitrov, čím dochádza k nakoncentrovaniu analytu. Pre dokonalejšiu separáciu SRP od vodnej fázy je výhodné zvýšiť viskozitu SRP. Na zvýšenie viskozity SRP sa najčastejšie využíva ľadový kúpeľ. Po ochladení SRP nasleduje odstránenie vodnej fázy a následné zriedenie SRP pridaním činidla, ktoré je vhodné pre zvolený detektor. Schématické znázornenie postupu pre CPE je uvedené na obr. 3.

Aby došlo ku kvantitatívnej separácii a boli dosiahnuté vysoké prekoncentračné faktory pre nasledujúce stanovenie, je nutné zvoliť pre vypracovávaný postup vhodné chelatačné činidlo a tenzid, a následne optimalizovať všetky experimentálne parametre (koncentráciu chelatačného činidla a tenzidu, pH roztoku, prídavky pomocných činidiel, teplotu a čas inkubácie, separáciu fáz, výber činidla na riedenie SRP), ktoré sú podrobnejšie rozdiskutované v nasledujúcich odsekoch.

2.3. Optimalizácia experimentálnych podmienok pre CPE kovov

2.3.1. Výber chelatačného činidla

Výber vhodného chelatačného činidla, ktoré vytvorí hydrofóbny komplex s iónovým analytom, je jedným z hlavných faktorov, ktorý ovplyvňuje účinnosť separácie kovových iónov. K najčastejšie využívaným činidlám patria karbamáty (napr. amónium pyrolidín ditiokarbamát; APDC), pyridylazo deriváty (napr. 1-(2-pyridylazo)-2-naftol; PAN) a chinolínové deriváty (8-hydroxychinolín; 8-HQ). Tieto zlúčeniny možno považovať za univerzálne činidlá, ktoré vytvárajú hydrofóbne zlúčeniny s väčšinou kovových iónov a využívajú sa v tých v prípadoch, keď sa na detekciu

Obr. 3. Schématické znázornenie postupu pri CPE kovov

stanovovaného analytu použije vysoko selektívny detektor. Iné činidlá, ako napr. *O*,*O*-dietylditiofosfát (DDTP), sú využívaná pri selektívnejších extrakciách.

Výber činidla súvisí s požiadavkou vzniku dostatočne hydrofóbneho komplexu, ktorý má vysoký rozdeľovací koeficient, vzniká rýchlo a kvantitatívne. V tomto prípade termodynamické parametre (konštanta vzniku komplexu; K_f) spolu s kinetickými parametrami vzniku komplexu a presunu do micelárnej fázy ovplyvňujú celý postup, zatiaľ čo parametre ovplyvňujúce vznik miciel sú menej dôležité⁵.

2.3.2. Výber a koncentrácia tenzidu

Vo väčšine publikovaných prác sa ako tenzidy pri analýze kovov využívajú prevažne poly(oxyetylén)ové alkylfenoly (zo sérií Triton X- a PONPE; viď vzorce 1 a 2 v obr. 4). Sú komerčne dostupné s vysokou čistotou, stabilné, neprchavé a netoxické⁶⁻⁸. Základné charakteristiky najčastejšie používaných neiónových tenzidov pre CPE kovov sú uvedené v tabuľke I. Na veľkosť prekoncentračného faktora a extrakčný výťažok CPE pri použití neiónových tenzidov má vplyv: dĺžka alkylového reťazca neiónového tenzidu; prítomnosť aromatickej skupiny; počet oxyetylénových jednotiek; ako aj koncentrácia tenzidu. Z uvedeného je zrejmé, že vhodný výber tenzidu je ďalšou dôležitou časťou pri navrhovaní spoľahlivého postupu CPE. Vhodná koncentrácia tenzidu sa zisťuje experimentálne tak, že sa zostrojí závislosť extrakčný výťažok vs. zvyšujúca sa koncentrácia tenzidu. V tomto prípade extrakčný výťažok so zvyšovaním koncentrácie narastá až do určitej "hraničnej" koncentrácie, pri ktorej sa zaznamená maximálny extrakčný výťažok. Ďalšie zvyšovanie koncentrácie tenzidu vedie k zvyšovaniu objemu SRP, čo ovplyvní extrakčný výťažok aj prekoncentračný faktor (dochádza k ich zníženiu). Vyberá sa teda "hraničná" koncentrácia, pri ktorej sa získava maximálny extrakčný výťažok (z dôvodu získania čo možno najväčšieho pomeru medzi objemom vodnej fázy a objemom SRP, čo vedie k získaniu maximálneho prekoncentračného faktora).

Oktylfenoxy poly(oxyetylén) éter; Triton X-114 (x = 7-8); Triton X-100 (x = 9-10)

Poly(oxyetylén) nonyl fenyl éter; PONPE-5.0 (n = 5); PONPE-7.5 (n = 7,5)

Obr. 4. Štrukturné vzorce vybraných tenzidov

Tabuľka I

Základné charakteristiky najčastejšie používaných neiónových tenzidov pri CPE kovov

Tenzid	Teplota zákalu CMC		Lit.	
	[°C]	[mmol l ⁻¹]		
Triton X-114	23–25	0,20–0,35	6	
Triton X-100	64–65	0,17–0,30	6	
PONPE-5.0	15-17	0,57	9,10,11	
PONPE-7.5	5–20 ^a	0,085	6	

^a V závislosti od použitej koncentrácie

2.3.3. Vplyv pH

V prípade kovových chelátov, optimálne hodnoty pH súvisia s optimálnymi hodnotami pH, pri ktorých vznikajú stabilné neiónové komplexy. Rovnako veľmi dôležitú úlohu zohráva pH pri zlepšení extrakčnej účinnosti v prípadoch, pri ktorých sa nepoužívajú prídavky chelatačných činidiel, pretože v tomto prípade pH ovplyvňuje celkový náboj analytu, čo následne ovplyvňuje vznik komplexu medzi kovom a poly(oxyetylén)ovými skupinami použitého tenzidu.

Osobitnú pozornosť je potrebné venovať výberu vhodného pH v prípadoch, kedy je navrhovaný CPE postup používaný na špeciáciu kovov, pričom je dôležité, aby pri zvolenom pH iba jedna iónová forma sledovaného analytu spoľahlivo vytvorila neiónový komplex, zatiaľ čo iná iónová forma sledovaného analytu pri danom zvolenom pH neiónový komplex tvoriť nesmie. Ako príklady možno uviesť špeciačné štúdie venované rozlíšeniu anorganických foriem Cr(III)/Cr(VI), As(III)/As(V), Sb(III)/Sb(V) alebo Se(IV)/Se(VI) (cit.^{12–14}).

2.3.4. Prídavky pomocných činidiel

V mnohých prípadoch sa na dosiahnutie účinnej extrakcie využívajú prídavky rôznych organických činidiel alebo anorganických solí. Prídavok etanolu (v prípadoch využívania tenzidov, ktoré sa vyznačujú nízkou CPT) má za následok zvýšenie teploty potrebnej na vytvorenie zákalu, čo vedie k zvýšeniu prekoncentračných faktorov a zlepšeniu kinetiky fázovej separácie¹⁵. Prítomnosť anorganických elektrolytov naopak znižuje teplotu potrebnú na dosiahnutie zákalu a vytvorenie dvoch fáz v dôsledku dehydratácie poly(oxyetylén)ového reťazca¹⁶. Anorganické soli takisto zvyšujú hydrofóbne interakcie medzi analytom a molekulovými agregátmi tenzidu, čo vedie k uprednostneniu jeho extrakcie z vodnej fázy do micelárnej fázy.

2.3.5. Inkubačná teplota a čas

Pre dosiahnutie maximálneho prekoncentračného faktora je potrebné uskutočňovať CPE pri teplotách nad CPT (cit.^{9,15}). Zvýšenie inkubačnej teploty môže znamenať zníženie objemu SRP, a teda zvýšenie prekoncentračného faktora. Zhruba päťnásobné zníženie objemu SRP bolo

Tabuľka II Spojenie CPE a FAAS

Analyt	Komplexotvorné činidlo	Tenzid	Činidlo na riedenie SRP	LOD ^a [µg l ⁻¹]	PF ^b	Lit.
Cd(II)	DDTP	TX-114	0.1 M HNO ₃ v C ₂ H ₅ OH	0.90	NZ	32
Sb(III)	BPHA	TX-114	$1 \text{ M HNO}_2 \text{ v CH}_2 \text{OH}$	1.82	45	33
Cd(II)	APDC	TX-114	1 M HNO, y CH-OH	NZ	NZ	34
Ph(II)	APDC	TX-114	$1 \text{ M HNO}_3 \text{ v CH}_3 \text{OH}$	NZ	NZ	34
Cu(II)	APDC	TX-114	$1 \text{ M HNO}_3 \text{ v CH}_3\text{OH}$	NZ	NZ	34
Cr(III)	APDC	TX-114	1 M HNO ₃ v CH ₃ OH	NZ	NZ	34
Zn(II)	APDC	TX-114	1 M HNO ₃ v CH ₃ OH	NZ	NZ	34
Fe(III)	APDC	TX-114	1 M HNO ₃ v CH ₃ OH	NZ	NZ	34
Cd(II)	PMBP	TX-100	0,1 M HNO ₃ v CH ₃ OH	0,64	23	35
Cd(II)	8-HQ	TX-114	1 M HNO ₃ v CH ₃ OH	0,15	15	36
Cu(II)	8-HQ	TX-114	1 M HNO ₃ v CH ₃ OH	0,72	21	36
Zn(II)	8-HQ	TX-114	1 M HNO ₃ v CH ₃ OH	0,03	66	36
Cd(II)	žiadne	TX-114	NZ	1,00	NZ	37
Mn(II)	TAR	TX-114	0,15 M HNO3 v CH3OH	0,60	84	38
Cu(II)	8-HQ	TX-114	1 M HNO ₃ v CH ₃ OH	0,025	305	39
Mn(II)	8-HQ	TX-114	1 M HNO ₃ v CH ₃ OH	0,033	215	39
Ni(II)	8-HQ	TX-114	1 M HNO ₃ v CH ₃ OH	0,035	205	39
Cd(II)	8-HQ	TX-114	1 M HNO ₃ v CH ₃ OH	0,016	241	39
Fe(III)	8-HQ	TX-114	1 M HNO ₃ v CH ₃ OH	0,105	54	39
Co(II)	8-HQ	TX-114	1 M HNO ₃ v CH ₃ OH	0,005	130	39
Zn(II)	8-HQ	TX-114	1 M HNO ₃ v CH ₃ OH	0,004	167	39
Cr(III)	8-HQ	TX-114	I M HNO ₃ v CH ₃ OH	0,075	198	39
$Pb(\Pi)$	8-HQ	1X-114	I M HNO ₃ v CH ₃ OH	0,16/	64	39
Cu(II)	Me-BTABr	TX-114	1 M HNO ₃ v CH ₃ OH	1,08	17	40
Mn(II)	PAN	TX-114	0,1 M HNO ₃ v CH ₃ OH	0,39	49	41
Ag(I)	BMAA	TX-114	NZ	0,43	50	42
Cu(II)	H(2)mdo	TX-114	0,1 M HNO ₃ v CH ₃ OH	0,14	65	43
Ni(II)	H(2)mdo	TX-114	0,1 M HNO ₃ v CH ₃ OH	0,20	59	43
Mn(II)	PMBP	TX-100	0,1 M HNO ₃ v CH ₃ OH	1,45	20	44
Cu(II)	Me-BDBD	TX-114	1 M HNO ₃ v CH ₃ OH	1,50	14	45
Co(II)	Me-BTABr	TX-114	1M HNO ₃ v CH ₃ OH	0,90	28	46
Ni(II)	Me-BTABr	TX-114	1 M HNO ₃ v CH ₃ OH	1,10	23	46
Pb(II)	PMBP	TX-114	konc. CH ₃ OH	1,49	110	47
Ag(I)	MBT	TX-114	0,1 M HNO ₃ v CH ₃ OH	2,20	46	48
Pb(II)	BCB	TX-114	1 M HNO ₃ v CH ₃ OH	7,50	25	49
Rh(II)	2-PPC	TX-114	0,1 M HNO ₃ v CH ₃ OH	0,052	50	50
Cd(II)	TAC	TX-114	NZ	0,077	NZ	51
Pb(II)	TAC	TX-114	NZ	1,05	NZ	51
Cu(II)	NDTT	TX-114	0,1 M HNO ₃ v CH ₃ OH	0,22	22	52
Cu(II)	Cupron	TX-114	0,1 M HNO ₃ v CH ₃ OH	0,04	88	53

^a Medza dôkazu; ^b prekoncentračný faktor; NZ: nezistené; DDTP: amónna soľ kyseliny *O*,*O*-dietylditiofosforečnej; BPHA: *N*-benzoyl-*N*-fenylhydroxylamín; APDC: amónium pyrolidín ditiokarbamát; PMBP: 1-fenyl-3-metyl-4-benzoyl-5-pyrazolón; 8-HQ: 8-hydroxychinolín; TAR: 2-(2'-tiazolylazo)-rezorcinol; Me-BTABr: 2-[2'-6-metyl-benzotiazolylazo]-4-brómfenol; PAN: 1-(2-pyridylazo)-2-naftol; BMAA: bis(2-merkaptoanil)acetylacetón; H(2)mdo: 3-[(8-{[(E)-2-hydroxyimino-1-metylpropylidén]amino}-1-naftyl)imino]-2-butanón oxím; Me-BDBD: kyselina 6-[2'-(6'-metyl-benzotiazolylazo)]-1,2-dihydroxy-3,5-benzéndisulfónová; MBT: 2-merkaptobenzotiazol; BCB: brilant-krezolová modrá; 2-PPC: 2-propylpiperidín-1-karbo-ditionát; TAC: 2-(2-tiazolylazo)-*p*-krezol; NDTT: 6-(2-naftyl)-2,3-dihydro-triazín-3-tión; Cupron: 1,5-difenyl-benzoín

zaznamenané pri zvýšení inkubačnej teploty z 25 °C na 90 °C (cit.¹⁷). Avšak v prípade termálne nestabilných kovových chelátov sa zvyšovanie teploty neodporúča, pretože v takýchto prípadoch dochádza k znižovaniu extrakčného výťažku v dôsledku rozkladu nestabilného chelátu. Inkubačný čas sa najčastejšie pohybuje medzi 4–15 minútami a teploty medzi 30–70 °C (v závislosti od použitého tenzidu).

2.3.6. Separácia fáz

Existuje niekoľko navrhnutých alternatív na odseparovanie SRP od vodnej fázy. Po centrifugácii, ktorá urýchľuje fázovú separáciu a zvyčajne trvá 5–10 minút, sa zmes ochladí v ľadovom kúpeli (najčastejšie pri teplotách okolo 0 °C). SRP sa stáva vysoko viskózna a odstránenie vodnej fázy je možné jednoducho dekantáciou¹⁸. Okrem uvedeného postupu je možné na ochladenie SRP využiť zmes ľadu a NaCl a následne odstrániť vodnú fázu odsatím za pomoci peristaltickej pumpy^{10,11}. Rovnako možno využiť zmes ľadu a acetónu a vodnú fázu odstrániť pomocou striekačky¹⁹. Pre zvýšenie prekoncentračného faktora je možné po odstránení vodnej fázy ešte SRP zahriať vo vodnom kúpeli pri 100 °C (cit.²⁰) alebo v sušiarni pri teplote 100–120 °C (cit.⁵), čím sa odstránia aj posledné zvyšky vody.

2.3.7. Výber činidla na riedenie SRP

Po odstránení vodnej fázy sa získava značne viskózna SRP. Pre zníženie viskozity SRP a možnosť bezproblémového nadávkovania vzorky do použitého prístroja, je ďalším dôležitým krokom výber vhodného činidla na riedenie SRP. Tento výber závisí od použitého tenzidu, od použitej detekcie a stanovovaného analytu²¹. V prípade AAS detekcie sú najčastejšie používanými činidlami metanolické alebo etanolické roztoky minerálnych kyselín (najčastejšie HNO₃), v prípade použitia ICP-AES detekcie sa najčastejšie SRP riedi priamo koncentrovanými minerálnymi kyselinami²².

2.4. Spojenie CPE s metódami atómovej spektrometrie

Väčšina publikovaných prác, v ktorých je využitá CPE pri analýze kovov, je spojená s metódami atómovej spektrometrie, z nich predovšetkým s plameňovou atómovou absorpčnou spektrometriou (FAAS), elektrotermickou atómovou absorpčnou spektrometriou (ETAAS) a atómovou emisnou spektrometriou s indukčne viazanou plazmou (ICP-AES). Je to predovšetkým vďaka vysokej selektivite týchto detektorov, ktoré sú schopné spoľahlivo stanoviť sledovaný analyt aj v prípadoch menej účinných separácií. Počet prác venovaných spojeniu CPE s už spomínanými metódami atómovej spektrometrie má narastajúcu tendenciu^{22,23}, pričom okrem prác venovaných separácii a prekoncentrácii rôznych kovov, začína narastať aj počet prác venovaných špeciácii predovšetkým toxických a esenciálnych prvkov.

2.4.1. Spojenie CPE a FAAS

Prídavok zrieďovacieho činidla k SRP je v každom prípade nevyhnutnosťou pre získanie homogénneho roztoku s nízkou viskozitou, ktorý je kompatibilný s používanými zhmlovačmi v FAAS. Vplyv metanolu na signál pri použití plameňovej atomizácie bol v minulosti predmetom niekoľkých štúdií²⁴⁻²⁶. Pri použití organických činidiel v FAAS bolo potvrdené zvýšenie citlivosti minimálne dvojnásobne. Tento úkaz je pripisovaný nízkemu povrchovému napätiu organických činidiel (napr. menej ako 25 dyn cm⁻² pre metanol, zatiaľ čo pre vodu je to 72 dyn cm⁻²), čo značne ovplyvňuje zhmlovací proces²⁷. Vplyvu tenzidov na signál pri použití plameňovej atomizácie bolo venovaných taktiež niekoľko štúdií28-30. Väčšina z nich opisuje zreteľné zlepšenie citlivosti v FAAS (a teda odporúčajú ich použitie), avšak v niektorých prípadoch bolo zaznamenané iba nepatrné alebo žiadne zlepšenie³¹. V súčasnosti je však potvrdené, že pri analýze roztokov obsahujúcich tenzidy vznikajú v zhmlovačoch jemnejšie kvapôčky aerosolu, čo môže priaznivo ovplyvniť ich transportnú účinnosť do plameňa, ako aj účinnosť pri atomizácii vzorky23.

Prehľad prác publikovaných za posledné tri roky, ktoré sú venované spojeniu CPE a FAAS, je uvedený v tabuľke II.

2.4.2. Spojenie CPE a ETAAS

Výhodou ETAAS detekcie je to, že organické činidlá ako aj tenzidy sú plne kompatibilné s ETAAS. Zatiaľ čo kontaktný uhol medzi molekulami vody a povrchovým uhlíkom grafitovej kyvety je 85,7°, uhol medzi molekulami organických činidiel a povrchovým uhlíkom grafitovej kyvety sa pohybuje medzi 0-10°, takže zatiaľ čo systém voda/grafit prejavuje znaky nestability, systém organické činidlo/grafit je celkom kompatibilný. Okrem organických činidiel aj prítomnosť tenzidov v analyzovaných roztokoch môže viesť k zmenšeniu kontaktného uhla, čo taktiež ponúka možné riešenie daného problému²³. Z uvedeného je zrejmé, že prítomnosť tenzidu vo vodnom roztoku môže napomôcť pri rovnomernom dávkovaní vzorky na grafitový povrch. Uvedené zistenia viedli k používaniu tenzidov (predovšetkým zo série Triton X-) práve na zvýšenie zmáčavosti grafitového povrchu v ETAAS. Z opísaných zistení je zrejmé, že pri využití ETAAS detekcie po CPE separácii, prekoncentrácii alebo špeciácii kovov nie sú očakávané žiadne vážnejšie problémy. Avšak aj v tomto prípade spojenia CPE a ETAAS je pre každý analyt potrebné optimalizovať teplotný program a zvoliť vhodný chemický modifikátor.

Prehľad prác publikovaných za posledné tri roky, ktoré sú venované spojeniu CPE a ETAAS je uvedený v tabuľke III.

2.4.3. Spojenie CPE a ICP-AES

Pri analýze roztokov pripravených v organických činidlách dochádza pri využití ICP-AES detekcie k zmenám základných vlastností plazmy (teplota plazmy, stupeň ionizácie), k zmene stability plazmy, k zmene rozmerov

Tabuľka III Spojenie CPE a ETAAS

Pb(II)

Cd(II)

DDTP

DDTP

Analyt	Komplexotvorné činidlo	Tenzid	Činidlo na riedenie SRP	LOD ^a $\left[ug \right]^{-1} \right]$	PF^{b}	Lit.
Pb(II)	Br-PADAP	TX-114	0,1 M HNO ₃ v CH ₃ OH	0,080	50	54
Cd(II) Pb(II)	DDTP DDTP	TX-114 TX-114	0,1 M HNO ₃ v CH ₃ OH 0,1 M HNO ₃ v CH ₃ OH	0,006 0,040	129 18	55 55
Fe(III) V(V)	HMQ HO₀Q	TX-100 TX-100	0,1 M HCl 0,1 M HCl	NZ NZ	102 58	56 56
Bi(III)	ditizón	TX-114	tetrahydrofurán	0,020	196	57
As(V)	molybdénan/H ₂ SO ₄	TX-114	konc. CH ₃ OH	0,010	53	58
As(III)	APDC	TX-114	0,1 M HNO ₃ v CH ₃ OH	0,040	36	59
Sn(IV)	8-HQ	TX-114	0,15 M HNO3 v CH3OH	0,012	96	60
Cr(VI)	Br-PF	TX-100	1 M HNO ₃ v CH ₃ OH	0,010	50	61
Mn(II) Fe(III)	PMBP PMBP	TX-100 TX-100	0,1 M HNO ₃ 0,1 M HNO ₃	0,020 0,080	31 25	62 62
Ni(II)	PMBP	TX-100	NZ	0,120	27	63
Cd(II)	PAN	TX-100	2 M HCl	0,006	50	64
Sn(IV)	PAN	TX-100	NZ	0,510	NA	65
Pb(II)	DDTP	TX-114	konc. CH ₃ OH	0,016	22	66
Cu(II)	PAN	TX-114	0,1 M HNO ₃ v CH ₃ OH	0,005	NZ	67
Ag(I)	DDTP	TX-114	NZ	0,008	35	68
Mn(II)	PMBP	TX-114	NZ	0,020	31	69
Au(I)	žiadny	PONPE 7.5	6 M HCl	0,002	200	70
Ag(I)	žiadny	PONPE 7.5	6 M HCl	0,001	60	71
Ag(I) Co(II)	APDC APDC	TX-114 TX-114	0,2 M HNO ₃ v CH ₃ OH 0,2 M HNO ₃ v CH ₃ OH	0,003 0,008	196 210	72 72
Cr(III)	APDC	TX-114	0,2 M HNO ₃ v CH ₃ OH	0,003	200	72
Cu(II)	APDC	TX-114	$0,2 \text{ M HNO}_3 \text{ v CH}_3\text{OH}$	0,006	209	72
re(II) Mn(II)	APDC	1X-114 TX-114	$0.2 \text{ M} \text{HNO}_3 \text{ V} \text{CH}_3\text{OH}$ $0.2 \text{ M} \text{HNO}_2 \text{ V} \text{CH}_2\text{OH}$	0,015	205 197	72
Ni(II) Pb(II)	APDC APDC	TX-114 TX-114 TX-114	0,2 M HNO ₃ v CH ₃ OH 0,2 M HNO ₃ v CH ₃ OH	0,002 0,009 0,010	186 197	72 72 72
Cd(II)	Br-PADAP	TX-114	NZ	0,040	21	73

^a Medza dôkazu; ^b prekoncentračný faktor; NZ: nezistené; Br-PADAP: 2-(5-brómo-2-pyridylazo)-5-dietylaminofenol; DDTP: amónna soľ kyseliny O,O-dietylditiofosforečnej; HMQ: 2-metyl-8-chinolinol; HO₆Q: 5-hexyloxymetyl-8-chinolinol; APDC: amónium pyrolidín ditiokarbamát; 8-HQ: 8-hydroxychinolín; Br-PF: dibrómofenylurón; PMBP: 1-fenyl-3-metyl-4-benzoyl-5-pyrazolón; PAN: 1-(2pyridylazo)-2-naftol

a tvaru plazmy^{75–77}, k zmene rýchlosti prietoku aerosolu^{78,79}. Vo väčšine prípadov sú to zmeny nepriaznivé^{80,81}. Práve z uvedených dôvodov sú na riedenie tenzidom obohatenej fázy v prípade ICP-AES detekcie používané priamo koncentrované minerálne kyseliny bez pridania akéhokoľvek organického činidla. V prípadoch analýzy roztokov obsahujúcich tenzidy boli opísané iba minimálne alebo žiadne efekty ovplyvňujúce transport vzorky a analytickú citlivosť pri použití ICP-AES detekcie^{28,82}.

TX-114

TX-114

Prehľad prác publikovaných za posledné tri roky, ktoré sú venované spojeniu CPE a ICP-AES, je uvedený v tabuľke IV.

0,040

0,002

2.5. Zhrnutie

0,1 M HNO₃ v CH₃OH

0,1 M HNO3 v CH3OH

Najčastejšie využívaným tenzidom pri CPE kovov je Triton X-114, vďaka svojim optimálnym fyzikálnochemickým vlastnostiam (nízka teplota potrebná na vytvorenie zákalu: 23-25 °C, čo je zvlášť dôležité pri extrakcii

74

74

16

16

Tabuľka IV Spojenie CPE a ICP-AES

Analyt	Komplexotvorné činidlo	Tenzid	Činidlo	LOD ^a	PF^{b}	Lit.
			na riedenie SRP	$[\mu g l^{-1}]$		
Cr(III)	PMBP	TX-114	NZ	0,81	20	83
Gd(III)	8-HQ	TX-114	0,01 M HNO3	NZ	38	84
Cd(II)	Br-PADAP	TX-114	7 M HNO ₃	0,081	22	85
Cr(III)	Br-PADAP	TX-114	7 M HNO ₃	0,79	36	85
Cu(II)	Br-PADAP	TX-114	7 M HNO ₃	0,38	46	85
Mn(II)	Br-PADAP	TX-114	7 M HNO ₃	0,83	25	85
Ni(II)	Br-PADAP	TX-114	7 M HNO ₃	0,28	65	85
Pb(II)	Br-PADAP	TX-114	7 M HNO ₃	0,69	39	85
Sb(III)	APDC	TX-114	NZ	0,09	872	86
Cr(III)	TTA	TX-114	NZ	0,22	NZ	87
Zr(IV)	chinalizarín	TX-114	1 M HNO ₃ v C ₃ H ₇ OH	0,26	39	88
Hf(IV)	chinalizarín	TX-114	1 M HNO ₃ v C ₃ H ₇ OH	0,31	36	88
Ce(IV)	n-TBHA	TX-114	1 M HNO ₃	0,40	14	89
Cd(II)	ditizón	TX-114	7 M HNO ₃	0,093	21	90
Co(II)	ditizón	TX-114	7 M HNO ₃	0,20	21	90
Cr(III)	ditizón	TX-114	7 M HNO ₃	1,20	19	90
Mn(II)	ditizón	TX-114	7 M HNO ₃	0,73	9	90
Hg(II)	jodid/metyl zeleň	TX-114	0,5 M HNO ₃	0,056	19	91
MeHg(I)	APDC	TX-114	0,5 M HNO ₃	0,095	10	91

^a Medza dôkazu; ^b prekoncentračný faktor; NZ: nezistené; PMBP: 1-fenyl-3-metyl-4-benzoyl-5-ón; 8-HQ: 8-hydroxychinolín; Br-PADAP: 2-(5-brómo-2-pyridylazo)-5-dietylaminofenol; APDC: amónium pyrolidín ditiokarbamát; TTA: tenoyltrifluóracetón; n-TBHA: kyselina *n-p*-tolylbenzohydroxámová

termálne nestabilných kovových chelátov; vysoká hustota: 1,052 g ml⁻¹, čo uľahčuje fázovú separáciu). K jeho výhodám patrí tiež to, že je komerčne dostupný s vysokou čistotou (za relatívne nízku cenu), je stabilný, neprchavý a netoxický. Zo spomínaných metód atómovej spektrometrie je CPE separácia a prekoncentrácia využívaná najmä s FAAS detekciou. Uvedené spojenie vedie k značnému zníženiu medzí stanovenia, ponúka možnosť rýchlej a relatívne najlacnejšej analýzy.

3. Záver

Klasickou metódou na separáciu a prekoncentráciu kovov z kvapalných vzoriek bola v minulosti predovšetkým extrakcia v systéme kvapalina – kvapalina ("liqiudliquid extraction" – LLE). Táto technika je však pracná, časovo náročná, ťažko automatizovateľná, využíva značné objemy vysoko čistých a drahých činidiel (v mnohých prípadoch toxických a karcinogénnych) a potýka sa s praktickými problémami, ako je napr. tvorba emulzíí. Toto všetko viedlo k snahám navrhnúť a vypracovať menej pracné postupy, pri ktorých by zdraviu škodlivé činidlá boli nahradené činidlami, ktoré zdravie neohrozujú a nemajú negatívny vplyv na životné prostredie. Práve technika CPE umožnila nahradiť techniku LLE v plnej miere, pričom ponúka tieto výhody: použitie stabilných, neprchavých a netoxických činidiel, minimalizáciu použitých činidiel, minimalizáciu času potrebného na extrakciu, možnosť nakoncentrovať širokú škálu analytov z rôznych typov matríc, možnosť nakoncentrovať rôzne špécie sledovaného analytu, dosiahnuť značné prekoncentračné faktory, cenovú nenáročnosť a dostupnosť. Čo sa týka on-line spojenia CPE s metódami atómovej spektrometrie, toto spojenie nie je jednoduchou záležitosťou, no aj napriek tomu je vyriešenie technických problémov v takomto spojení možné a v literatúre možno nájsť publikácie, ktoré opisujú on-line spojenie CPE s metódou ICP-AES.

Táto práca vznikla v rámci riešenia projektu finančne podporovaného grantom Vedeckej grantovej agentúry Ministerstva školstva SR a Slovenskej akadémie vied – VEGA – č. 1/4464/07.

LITERATÚRA

- 1. Goto K., Taguchi S., Fukue Y., Ohta K., Watanabe H.: Talanta 24, 752 (1977).
- 2. Watanabe H., Tanaka H.: Talanta 25, 585 (1978).

- Liu C. L., Nikas Y. J., Blankschtein D.: Biotechnol. Bioeng. 52, 185 (1996).
- Rosen M. J. (ed.): Surfactants and interfacial phenomena. Wiley-Interscience, New York 1978.
- Paleologos E. K., Giokas D. L., Karayannis M. I.: Trends Anal. Chem. 24, 426 (2005).
- Quina F. H., Hinze W. L.: Ind. Eng. Chem. Res. 38, 4150 (1999).
- McIntire G. L.: Crit. Rev. Anal. Chem. 21, 257 (1990).
- Pramauro E., Pelezetti E. (ed.): Surfactants in Analytical Chemistry. Applications of Organized Amphiphilic Media. Wilson & Wilson's, Elsevier, Amsterdam 1996.
- Hinze W. L., Pramauro E.: Crit. Rev. Anal. Chem. 24, 133 (1993).
- Wuilloud G. M., de Wuilloud J. C. A., Wuilloud R. G., Silva M. F., Olsina R. A., Martinez L. D.: Talanta 58, 619 (2002).
- de Wuilloud J. C. A., Wuilloud R. G., Silva M. F., Olsina R. A., Martinez L. D.: Spectrochim. Acta, Part B 57, 365 (2002).
- Kiran K., Kumar K. S., Prasad B., Suvardhan K., Babu L. R., Janardhanam K.: J. Hazard. Mater. 150, 852 (2008).
- Li Y., Hu B., He M., Xiang G.: Water Res. 42, 1195 (2008).
- 14. Chen B. B., Hu B., He M.: Rapid Commun. Mass Spectrom. 20, 2894 (2006).
- Silva M. F., Fernandez L., Olsina R. A., Stacchiola D.: Anal. Chim. Acta 342, 229 (1997).
- Armstrong J. K., Chowdhry B. Z., Snowden M. J., Leharne S. A.: Langmuir 14, 2004 (1998).
- 17. Luconi M. O., Silva M. F., Olsina R., Fernandez L. P.: Talanta *51*, 123 (2000).
- Hinze W. L., Armstrong D. W. (ed.): Ordered Media in Chemical Separations. American Chemical Society, Washington DC 1987.
- Manzoori J. L., Bavili-Tabrizi A.: Anal. Chim. Acta 470, 215 (2002).
- Manzoori J. L., Karim-Nezhad G.: Anal. Sci. 19, 579 (2003).
- Giokas D. L., Paleologos E. K., Tzouwara-Karayanni S. M., Karayannis M. I.: J. Anal. At. Spectrom. 16, 521 (2001).
- 22. Silva M. F., Cerutti E. S., Martinez L. D.: Microchim. Acta 155, 349 (2006).
- 23. Stalikas C. D.: Trends Anal. Chem. 21, 343 (2002).
- 24. Dean J. A., Carnes W. J.: Anal. Chem. 34, 192 (1962).
- 25. Kodama M., Miyagawa S.: Anal. Chem. 52, 2358 (1980).
- 26. Stupar J., Dawson J. B.: Appl. Opt. 7, 1351 (1968).
- Kornahrens H., Cook K. D., Armstrong D. W.: Anal. Chem. 54, 1325 (1982).
- Farino J., Browner R. F.: Anal. Chem. 56, 2709 (1984).
- Yan Z. Y., Zang W.: J. Anal. At. Spectrom. 4, 797 (1989).

- Ruiz A. I., Canals A., Hernandis V.: J. Anal. At. Spectrom. 8, 109 (1993).
- Kodama M., Shimizu S., Sato M., Tominaga T.: Anal. Lett. 10, 591 (1977).
- Coelho L. M., Arruda M. A. Z.: Spectrochim. Acta, Part B 60, 743 (2005).
- 33. Fan Z. F.: Microchim. Acta 152, 29 (2005).
- Giokas D. L., Paleologos E. K., Karayannis M. I.: Anal. Chim. Acta 537, 249 (2005).
- Liang P., Li J., Yang X.: Microchim. Acta 152, 47 (2005).
- Shemirani F., Abkenar S. D., Jamali M. R.: Indian J. Chem., Sect A 44, 1211 (2005).
- Afkhami A., Madrakian T., Siampour H.: J. Hazard. Mater. *138*, 269 (2006).
- Bezerra M. D., Conceicao A. L. B., Ferreira S. L. C.: Microchim. Acta 154, 149 (2006).
- Farajzadeh M. A., Fallahi M. R.: Anal. Sci. 22, 635 (2006).
- 40. Lemos V. A., Santos J. S., Baliza P. X.: J. Braz. Chem. Soc. 17, 30 (2006).
- Rod A. R., Borhani S., Shemirani F.: Eur. Food Res. Technol. 223, 649 (2006).
- Shemirani F., Jamali M. R., Kozani R. R., Salavati-Niasari M.: J. Anal. Chem. 61, 124 (2006).
- Shemirani F., Jamali M. R., Kozani R. R., Salavati-Niasari M.: Sep. Sci. Technol. 41, 3065 (2006).
- 44. Sun Z. M., Liang P., Ding Q., Cao J.: Anal. Sci. 22, 911 (2006).
- Lemos V. A., Santos M. S., dos Santos M. J. S., Vieira D. R., Novaes C. G.: Microchim. Acta 157, 215 (2007).
- 46. Lemos V. A., da Franca R. S., Moreira B. O.: Sep. Purif. Technol. *54*, 349 (2007).
- Manzoori J. L., Abdolmohammad-Zadeh H.: Acta Chim. Slovenica 54, 378 (2007).
- Shemirani F., Kozani R. R., Assadi Y.: Microchim. Acta 157, 81 (2007).
- Surme Y., Narin I., Soylak M., Yuruk H., Dogan M.: Microchim. Acta 157, 193 (2007).
- Suvardhan K., Kumar K. S., Rekha D., Subrahmanyam P., Kiran K., Jayaraj B., Ramanaiah S., Janardhanam K., Chiranjeevi P.: Microchim. Acta 157, 237 (2007).
- Portugal L. A., Ferreira H. S., dos Santos W. N. L., Ferreira S. L. C.: Microchem. J. 87, 77 (2007).
- Biparva P., Hadjmohammadi M. R.: Acta Chim. Slovenica 54, 805 (2007).
- 53. Goudarzi N.: J. Brazil. Chem. Soc. 18, 1348 (2007).
- Chen J. R., Xiao S. M., Wu X. H., Fang K. M., Liu W. H.: Talanta 67, 992 (2005).
- Maranhao T. D., Borges D. L. G., da Veiga M. A. M. S., Curtius A. J.: Spectrochim. Acta, Part B *60*, 667 (2005).
- Ohashi A., Ito H., Kanai C., Imura H., Olashi K.: Talanta 65, 525 (2005).
- Shemirani F., Baghdadi M., Ramezani M., Jamali M. R.: Anal. Chim. Acta 534, 163 (2005).

- Shemirani F., Baghdadi M., Ramezani M.: Talanta 65, 882 (2005).
- 59. Tang A. N., Ding G. S., Yan X. P.: Talanta 67, 942 (2005).
- Yuan C. G., Jiang G. B., He B., Liu J. F.: Microchim. Acta 150, 329 (2005).
- Zhu X. S., Hu B., Jiang Z. C., Li M. F.: Water Res. 39, 589 (2005).
- Liang P., Sang H. B., Sun Z. M.: J. Colloid Interface Sci. 304, 486 (2006).
- Sun Z. M., Liang P., Ding Q., Cao J.: J. Hazard. Mater. 137, 943 (2006).
- Zhu X. S., Zhu X. H., Wang B. S.: Microchim. Acta 154, 95 (2006).
- Zhu X. H., Zhu X. S., Wang B. S.: J. Anal. At. Spectrom. 21, 192 (2006).
- 66. Bai F., Fan Z. F.: Microchim. Acta 159, 235 (2007).
- Chen J. G., Chen H. W., Chen S. H., Lin L., Zhong Y. Y.: Chem. Res. Chin. Univ. 23, 143 (2007).
- 68. Fan Z. F., Bai F.: At. Spectrosc. 28, 30 (2007).
- 69. Liang P., Sun Z. M., Cao J.: At. Spectrosc. 28, 62 (2007).
- Manzoori J. L., Abdolmohammad-Zadeh H., Amjadi M.: Microchim. Acta 159, 71 (2007).
- Manzoori J. L., Abdolmohammad-Zadeh H., Amjadi M.: J. Hazard. Mater. 144, 458 (2007).
- Meeravali N. N., Reddy M. A., Kumar S. J.: Anal. Sci. 23, 351 (2007).
- Xiao S., Chen J., Wu X., Miao Y.: J. Anal. Chem. 62, 42 (2007).
- Maranhao T. D., Martendal E., Borges D. L. G., Carasek E., Weiz B., Curtius A. J.: Spectrochim. Acta, Part B 62, 1019 (2007).
- Kreuning G., Maessen F. J. M. J.: Spectrochim. Acta, Part B 44, 367 (1989).
- Weir D. G., Blades M. W.: J. Anal. At. Spectrom. 9, 1323 (1994).
- 77. Weir D. G., Blades M. W.: J. Anal. At. Spectrom. 9, 1311 (1994).
- 78. Botto R. I.: J. Anal. At. Spectrom. 8, 51 (1993).
- Brenner I. B., Plantz M., Zhu J. J., Zander A.: J. Anal. At. Spectrom. *12*, 273 (1997).
- 80. Wiederin D. R., Houk R. S., Winge R. K., D'Silva A.

P.: Anal. Chem. 62, 1155 (1990).

- Molinero A. L., Castillo J. R., Chamorro P., Muniozguren J. M.: Spectrochim. Acta, Part B 52, 103 (1997).
- Bertagnolli J. A., Neylan D. L., Hammergren D. D.: At. Spectrosc. 14, 4 (1993).
- 83. Liang P., Li J.: At. Spectrosc. 26, 89 (2005).
- De Jong N., Draye M., Favre-Reguillon A., LeBuzit G., Cote G., Foos J.: J. Colloid Interface Sci. 291, 303 (2005).
- Bezerra M. A., Bruns R. E., Ferreira S. L. C.: Anal. Chim. Acta 580, 251 (2006).
- Li Y. J., Hu B., Jiang Z. C.: Anal. Chim. Acta 576, 207 (2006).
- 87. Li Y. J., Hu B., Jiang Z. C., Wu Y. W.: Anal. Lett. *39*, 809 (2006).
- Shariati S., Yamini Y.: J. Colloid Interface Sci. 298, 419 (2006).
- Shemirani F., Yousefi S. R.: Microchim. Acta 157, 223 (2007).
- Bezerra M. A., Maeda S. M. D., Oliveira E. P., de Carvalho M. D. B., Santelli R. E.: Spectrochim. Acta, Part B 62, 985 (2007).
- 91. Li Y. J., Hu B.: Spectrochim. Acta, Part B 62, 153 (2007).

I. Hagarová (Geological Institute Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic): Coupling Cloud Point Extraction to Atomic Spectrometric Methods for Separation, Preconcentration and Speciation of Metals

The purpose of this article is to offer an overview of the use of cloud point extraction (CPE) in separation, preconcentration and speciation of metals prior to their determination by atomic spectrometric methods. This review also presents theoretical background and a guide for optimization of CPE. Main attention is paid to hyphenation of CPE to flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma atomic emission spectrometry (ICP-AES).